|
UPT. PERPUSTAKAAN
Universitas Esa Unggul
Kampus Emas UEU - Jakarta Barat
|
Phone |
: |
021-5674223, ext 282 |
Fax |
: |
|
E-mail |
: |
[email protected] |
Website |
: |
http://library.esaunggul.ac.id
|
Support (Customer Service) :
|
[email protected] |
|
|
Welcome..guys!
|
Have a problem with your access?
Please, contact our technical support below:
|
LIVE SUPPORT
Astrid Chrisafi
|
! ATTENTION !
To facilitate the activation process, please fill out the member application form correctly and completely
Registration activation of our members will process up to max 24 hours (confirm by email). Please wait patiently
Still Confuse?
Please read our User Guide
|
|
UEU » Proceeding » Teknik Informatika Posted by [email protected] at 23/08/2021 01:17:18 • 582 Views
KOMPARASI PERFORMANSI ALGORITMA PENGKLASIFIKASI KNN, BAGGING DAN RANDOM FOREST UNTUK PREDIKSI KANKER PAYUDARACreated by :
Agung Mulyo Widodo ( 0021017305 ) Nizirwan Anwar ; Bambang Irawan ; Lista Meria ; Andika Wisnujati
Subject: | KANKER PEMODELAN PREDIKTIF | Alt. Subject : | BREAST CANCER CLASSIFICATION TECHNIQUES | Keyword: | PREDIKSI KANKER PAYUDARA |
Description:
Pemodelan prediktif menggunakan teknik
klasifikasi adalah salah satu cara data mining digunakan untuk
mendukung sistem pengambilan keputusan. Banyak teknik
pembelajaran mesin dimasukkan ke dalam pengembangan model
klasifikasi prediktif ini. Penelitian ini membandingkan akurasi
algoritma klasifikasi, khususnya algoritma Bagging, KNN, dan
Random forest, ketika digunakan dengan dataset yang sama untuk
mendiagnosis kanker payudara. Berdasarkan hasil perbandingan,
algoritma KNN memiliki akurasi tertinggi dari ketiga algoritma
tersebut, sedangkan algoritma random forest memiliki akurasi
yang paling rendah.
Alt. Description
Predictive modeling using classification
techniques is one of the ways data mining is used to support
decision-making systems. Numerous machine learning techniques
were incorporated into the development of this predictive
classification model. This study compares the accuracy of
classification algorithms, specifically the Bagging, KNN, and
Random forest algorithms, when used with the same dataset to
diagnose breast cancer. According to the comparison, the KNN
algorithm has the highest accuracy of the three algorithms, while
the random forest algorithm has the lowest.
Date Create | : | 23/08/2021 | Type | : | Text | Format | : | pdf | Language | : | Indonesian | Identifier | : | UEU-Proceeding-14_0066 | Collection ID | : | 14_0066 |
Source : Konferensi Nasional Ilmu Komputer (KONIK) 2021
Relation Collection: Civitas Akademika Universitas Esa Unggul
Coverage : Fakultas Ilmu Komputer
Rights : @2021 Perpustakaan Universitas Esa Unggul
Publication URL : https://digilib.esaunggul.ac.id/komparasi-performansi-algoritma-pengklasifikasi-knn-bagging-dan-random-forest-untuk-prediksi-kanker-payudara-21249.html
[ Free Download - Free for All ]
- UEU-Proceeding-21249-14_0066.pdf - 755 KB
[ FullText Content - Please, register first ]
...No Files...
10 Similar Document...
No similar subject found !
10 Related Document...
No related subject found !
|
POLLINGBagaimana pendapat Anda tentang repository kami ?
Visitors Today : 1
Total Visitor : 1970113
Hits Today : 4456
Total Hits : 157433021
Visitors Online: 1
Calculated since 16 May 2012
You are connected from 172.17.121.29 using Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; [email protected])
|